Implicit Regularization in Nonconvex Statistical Estimation: Gradient Descent Converges Linearly for Phase Retrieval, Matrix Completion and Blind Deconvolution
نویسندگان
چکیده
Recent years have seen a flurry of activities in designing provably efficient nonconvex procedures for solving statistical estimation problems. Due to the highly nonconvex nature of the empirical loss, stateof-the-art procedures often require proper regularization (e.g. trimming, regularized cost, projection) in order to guarantee fast convergence. For vanilla procedures such as gradient descent, however, prior theory either recommends highly conservative learning rates to avoid overshooting, or completely lacks performance guarantees. This paper uncovers a striking phenomenon in nonconvex optimization: even in the absence of explicit regularization, gradient descent enforces proper regularization implicitly under various statistical models. In fact, gradient descent follows a trajectory staying within a basin that enjoys nice geometry, consisting of points incoherent with the sampling mechanism. This “implicit regularization” feature allows gradient descent to proceed in a far more aggressive fashion without overshooting, which in turn results in substantial computational savings. Focusing on three fundamental statistical estimation problems, i.e. phase retrieval, low-rank matrix completion, and blind deconvolution, we establish that gradient descent achieves near-optimal statistical and computational guarantees without explicit regularization. In particular, by marrying statistical modeling with generic optimization theory, we develop a general recipe for analyzing the trajectories of iterative algorithms via a leave-one-out perturbation argument. As a byproduct, for noisy matrix completion, we demonstrate that gradient descent achieves near-optimal error control — measured entrywise and by the spectral norm — which might be of independent interest.
منابع مشابه
A Unified Computational and Statistical Framework for Nonconvex Low-rank Matrix Estimation
We propose a unified framework for estimating low-rank matrices through nonconvex optimization based on gradient descent algorithm. Our framework is quite general and can be applied to both noisy and noiseless observations. In the general case with noisy observations, we show that our algorithm is guaranteed to linearly converge to the unknown low-rank matrix up to a minimax optimal statistical...
متن کاملConvergence Analysis for Rectangular Matrix Completion Using Burer-Monteiro Factorization and Gradient Descent
We address the rectangular matrix completion problem by lifting the unknown matrix to a positive semidefinite matrix in higher dimension, and optimizing a nonconvex objective over the semidefinite factor using a simple gradient descent scheme. WithO(μr2κ2nmax(μ, log n)) random observations of a n1×n2 μ-incoherent matrix of rank r and condition number κ, where n = max(n1, n2), the algorithm line...
متن کاملNonconvex Matrix Factorization from Rank-One Measurements
We consider the problem of recovering low-rank matrices from random rank-one measurements, which spans numerous applications including covariance sketching, phase retrieval, quantum state tomography, and learning shallow polynomial neural networks, among others. Our approach is to directly estimate the low-rank factor by minimizing a nonconvex quadratic loss function via vanilla gradient descen...
متن کاملRegularized Gradient Descent: A Nonconvex Recipe for Fast Joint Blind Deconvolution and Demixing
We study the question of extracting a sequence of functions {fi, gi}i=1 from observing only the sum of their convolutions, i.e., from y = ∑s i=1 fi ∗ gi. While convex optimization techniques are able to solve this joint blind deconvolution-demixing problem provably and robustly under certain conditions, for medium-size or large-size problems we need computationally faster methods without sacrif...
متن کاملFast low-rank estimation by projected gradient descent: General statistical and algorithmic guarantees
Optimization problems with rank constraints arise in many applications, including matrix regression, structured PCA, matrix completion and matrix decomposition problems. An attractive heuristic for solving such problems is to factorize the low-rank matrix, and to run projected gradient descent on the nonconvex factorized optimization problem. The goal of this problem is to provide a general the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1711.10467 شماره
صفحات -
تاریخ انتشار 2017